PLATFORM/OXMAN Synthetic Apiary (2016)
PLATFORM / OXMAN Synthetic Apiary (2016)
241016

Position

Massive decline in bees worldwide, due to various factors affecting bee health such as agricultural chemicals, disease, and habitat loss, has raised alarm. As such, the cultivation of bees, the education about their health, and the advancement of non-standard bee environments has become increasingly important for their survival, and for ours. Honeybees are ideal model organisms because of the historical interplay between their communities and humans. Bees, as agents of cross-pollination, are an essential part of our agricultural production; without them, we would not have the fruits and the vegetables that nourish our lives.

Process

The Synthetic Apiary explores the possibility of a controlled space in which seasonal honeybees can thrive year-round. Light, humidity, and temperature are engineered to simulate a perpetual spring environment. Bees are provided with synthetic pollen and sugared water, and evaluated regularly for health and well-being. In this initial experiment, humans and honeybees co-habitate, enabling natural cultivation in an artificial space across scales, from organism- to building-scale.

Policy

Our architectural experiment incorporates several technological and biological investigations, and provides a setup for behavioral experiments regarding both bee fabrication capabilities and health. At the core of this project is the creation of an entirely synthetic environment enabling controlled, large-scale investigations of hives.

Position

Massive decline in bees worldwide, due to various factors affecting bee health such as agricultural chemicals, disease, and habitat loss, has raised alarm. As such, the cultivation of bees, the education about their health, and the advancement of non-standard bee environments has become increasingly important for their survival, and for ours. Honeybees are ideal model organisms because of the historical interplay between their communities and humans. Bees, as agents of cross-pollination, are an essential part of our agricultural production; without them, we would not have the fruits and the vegetables that nourish our lives.

Process

The Synthetic Apiary explores the possibility of a controlled space in which seasonal honeybees can thrive year-round. Light, humidity, and temperature are engineered to simulate a perpetual spring environment. Bees are provided with synthetic pollen and sugared water, and evaluated regularly for health and well-being. In this initial experiment, humans and honeybees co-habitate, enabling natural cultivation in an artificial space across scales, from organism- to building-scale.

Policy

Our architectural experiment incorporates several technological and biological investigations, and provides a setup for behavioral experiments regarding both bee fabrication capabilities and health. At the core of this project is the creation of an entirely synthetic environment enabling controlled, large-scale investigations of hives.